I. Review Examples (p.363): Exercises #2, 4, 6, 12

II. If an equation contains more than one instance of the variable, then collect/combine these like terms on one side of the equation...

\[e.g., \quad 5x + 1 = 3x + 4 \]

\[
\begin{align*}
-3x & \quad -3x \\
\hline
2x + 1 & = 4
\end{align*}
\]

\[x = ___ \]
III. Examples (p.363): Exercises #20-28(even)

IV. Distributive Property: \(a(x \pm b) = ax \pm ab \)
\hspace{1cm} e.g., \(2(x - 3) = 2x - 6 \)

V. Examples (pp.364-365): Exercises#32-46(even),52

HW: p.363 / Exercises #1-17(every other odd)
Read pp.354-356 (section 5.6)
Read pp.360-362 (section 5.7)
pp.363-365 / Exercises #11-55(every other odd)
I. Word Problems: 4-step strategy
 1. Read the problem to discern the unknown quantity, record it and assign a variable to represent it (if desired).
 2. Record all of the relevant known (i.e., given) quantities.
 3. Write an expression (or equation) using whatever arithmetic operations relate the known quantities to the unknown quantity.
 4. Simplify the expression(s) by performing the arithmetic operations present (and isolating the variable if needed).

II. Key Phrases (p.366): translating $+, -, \times \text{ or } \div$

III. Examples (pp.375-376): Exercises #6, 14, 20, 30, 36

HW: pp.375-376 / Exercises #1-33 (every other odd)
 Read pp.366-373 (section 5.8)